

Global Journal of Science Frontier Research Mathematics & Decision Sciences

Volume 12 Issue 2 Version 1.0 February 2012

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Some Classes of Analytic Functions Defined by Subordination

By A. El -Sayed Ahmed

Taif University , Saudi Arabia

Abstract - In this paper, we define some general classes of analytic functions by subordination. Our new results extend and improve a lot of known results (see [6]).

Keywords and phrases: Convex functions, univalent functions, subordination.

GJSFR – F Classification: 30C45

Strictly as per the compliance and regulations of :

© 2012 . A. El -Sayed Ahmed.This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ref.

On Some Classes of Analytic Functions Defined by Subordination

A. EI-Sayed Ahmed

Abstract - In this paper, we define some general classes of analytic functions by subordination. Our new results extend and improve a lot of known results (see [6]).

Keywords and phrases: Convex functions, univalent functions, subordination.

I. INTRODUCTION

Let A be the class of functions f which are analytic in the unit disk $\Delta = \{z : |z| < 1\}$ and are given by

$$f(z) = 1 + \sum_{n=k}^{\infty} a_k z^k, \qquad n \in \mathbb{N}.$$

$$(1.1)$$

A function f analytic in Δ is said to be univalent in a domain D if

$$f(z_1) = f(z_2) \Longrightarrow z_1 = z_2 \qquad z_1, z_2 \in D.$$

The class of all univalent functions f in Δ and have form (1.1) will be denoted by S.

A domain D is called convex if for every pair of points w_1 and w_2 in the interior of D, the line-segment joining w_1 to w_2 lies wholly in D. A function f which maps Δ onto a convex domain is called a convex function. The necessary and sufficient condition for

 $f \in S$ to be convex in Δ is that $\operatorname{Re} \frac{(zf'(z))'}{f'(z)} > 0$, $z \in \Delta$. The class off all functions convex and univalent in Δ is denoted by C.

A domain D is said to be starlike with respect to w=0 if the linear segment joining w=0 to any other point of D lies wholly in D. If a function f maps Δ onto a starlike domain with respect to w=0, then f is said to be starlike. The necessary and sufficient condition for $f \in S$ to be starlike is that

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \quad z \in \Delta.$$

This class is denoted by S^* , and it was studied first by Alexander [3].

Let f(z) and g(z) be analytic in Δ . We say that f(z) is subordinate to g(z) if there exists a function $\phi(z)$ analytic (not necessarily univalent) in Δ satisfying $\phi(0) = 0$ and $|\phi(z)| < 1$ such that

$$f(z) = g(\phi(z)) \quad (|z| < 1).$$
 (1.2)

Subordination is denoted by $f(z) \prec g(z)$. For more details on univalent functions by subordination, we refer to [1,2,5,7-16].

Let B be the class of functions, analytic in Δ and of the form

$$w(z) = \sum_{n=1}^{\infty} b_n z^n, \qquad n \in \mathbb{N}, \tag{1.3}$$

and satisfying the conditions w(0) = 0 and |w(z)| < 1 for all $z \in \Delta$. Based on the class B Janowski [4] defined the class P[A, B], as follows:

Let p be analytic function in Δ , given by

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n.$$
 (1.4)

Then p(z) is said to be in the class P[A, B]; $-1 \le B < A \le 1$; if and only if, for $z \in \Delta$

$$p(z) = \frac{1 + Aw(z)}{1 + Bw(z)} \qquad ; w \in B.$$
 (1.5)

Concerning the class P[A, B] Janowski [4] proved the following lemma:

Lemma 1.1 [4]. Let $p \in P[A, B]$, and given by (1.4). Then

$$(i) - |p_n| \le A - B,$$

$$(ii) - \frac{1-Ar}{1-Br} \le \operatorname{Re} p(z) \le \frac{1+Ar}{1+Br}$$

$$(iii) - |\arg p(z)| \le \sin^{-1} \frac{(A-B)r}{1-ABr^2}$$

These results are sharp.

Let N and D be analytic in Δ , D maps Δ onto a many -sheeted starlike region, N(0) = D(0), and

$$\frac{N'(z)}{D'(z)} \in P[A, B], \quad \text{then} \quad \frac{N(z)}{D(z)} \in P[A, B].$$

In [14], Ravichandran et.al defined the class $P_n[A, B]$ as follows:

For $-1 \le B < A \le 1$ and

$$p(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + ..., \quad n \in \mathbb{N},$$

we say that $p \in P_n[A, B]$ if

$$p(z) \prec \frac{1+Az}{1+Bz}, \quad z \in \Delta.$$

The class with the property that $\frac{zf'(z)}{f(z)} \in P_n[A, B]$ is denoted by $ST_n[A, B]$. If n = 1, we drop the subscript. Also, Ravichandran et.al [14] obtained the following lemma:

Lemma 1.2 [14]. If $p \in P_n[A, B]$, then

$$\left| p(z) - \frac{1 - ABr^{2n}}{1 - B^2r^{2n}} \right| \le \frac{(A - B)r^n}{1 - B^2r^{2n}}, \quad |z| = r < 1.$$
 (1.6)

For the special case $p \in P_n(\alpha) = P_n[1 - 2\alpha, -1]$, we get

 $m R_{ef.}$

[2]functions defined by subordination, J. Inequal. Pure Appl. Math. 5, No.2, Paper No.31, 11 p. (2004) Starlikeness and convexity conditions

$$\left| p(z) - \frac{1 + (1 - 2\alpha)r^{2n}}{1 - r^{2n}} \right| \le \frac{2(1 - \alpha)r^n}{1 - r^{2n}}, \quad |z| = r < 1.$$

In this paper, we define the classes:

$$\mathbf{P} = P_{k_1, k_2, k_3, \dots, k_N}^{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3, \dots, A_N, B_N],$$

$$\mathbf{P}_n = P'_{k_1, k_2, k_3, \dots, k_N}^{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3, \dots, A_N, B_N];$$

Notes

of analytic functions of the single complex variable z in the unit disk $\Delta = \{z : |z| < 1\}$. Moreover we study some of their basic properties. Besides we study the behavior of functions of these classes under some differential and integral operators. Concerning the class:

$$P_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[A_1,B_1,A_2,B_2,A_3,B_3,...,A_N,B_N],$$

which denotes the class of functions q that are analytic in Δ and are represented by

$$q(z) = \sum_{j=1}^{N} \alpha_j \left[\frac{k_j + 2}{4} p_j(z) - \frac{k_j - 2}{4} u_j(z) \right],$$

where $p_j, u_j \in P[A_j, B_j]$, α_j are non-negative real numbers; $\sum_{j=1}^{\infty} \alpha_j = 1$; $-1 \leq B_j < A_j \leq 1$, $k_j \geq 2$ and j = 1, 2, 3, ..., N.

The following lemma is useful in the sequel.

Lemma 1.3 [6]. If $\psi(z) = \sum_{n=0}^{\infty} b_n z^n$ is regular in Δ , $\phi_1(z)$ and h(z) are convex univalent in Δ such that $\psi(z) \prec \phi_1(z)$, then $\psi(z) * h(z) \prec \phi_1(z) * h(z)$, $z \in \Delta$, where

$$\phi_1(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $\psi(z) * \phi_1(z) = \sum_{n=0}^{\infty} b_n a_n z^n$.

II. THE CLASS P

Suppose that

$$\mathbf{P} = P_{k_1, k_2, k_3, \dots, k_N}^{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3, \dots, A_N, B_N]$$

denotes the class of functions q_n that are analytic in Δ and are represented by

(2.1)
$$q(z) = \sum_{j=1}^{N} \alpha_j \left[\frac{k_j + 2}{4} p_j(z) - \frac{k_j - 2}{4} u_j(z) \right],$$

where $p_j, u_j \in P_n[A_j, B_j]$, α_j are non-negative real numbers; $\sum_{j=1}^{\infty} \alpha_j = 1$; $-1 \le B_j < A_j \le 1$, $k_j \ge 2$ and j = 1, 2, 3, ..., N. Since, for

$$p(z) = 1 + \sum_{k=n}^{\infty} a_k z^k, \quad n \in \mathbb{N},$$

we say that $p \in P_n[A_j, B_j]$ if $p(z) \prec \frac{1+A_j z}{1+B_j z}$, $z \in \Delta$.

Lemma 2.1. The class **P** is a convex set.

Proof. We want to prove that for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$ and for

$$q_1, q_2 \in P_{k_1, k_2, k_3, \dots, k_N}^{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3, \dots, A_N, B_N],$$

that $q(z) = \frac{1}{\alpha + \beta} [\alpha q_1(z) + \beta q_2(z)]$, belongs to the class

we say that $p \in P_n[A_j, B_j]$ if $p(z) \prec \frac{1+A_jz}{1+B_jz}$, $z \in \Delta$.

Lemma 2.1. The class **P** is a convex set.

Proof. We want to prove that for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$ and for

$$q_1, q_2 \in P_{k_1, k_2, k_3, \dots, k_N}^{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3, \dots, A_N, B_N],$$

that $q(z) = \frac{1}{\alpha + \beta} [\alpha q_1(z) + \beta q_2(z)]$, belongs to the class

$$P_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n;A_1,B_1,A_2,B_2,A_3,B_3,...,A_N,B_N].$$

This can simply seen by letting

$$q_1(z) = \sum_{j=1}^{N} \alpha_j \left[\frac{k_j + 2}{4} f_j(z) - \frac{k_j - 2}{4} f_j^*(z) \right],$$

where $f_j, f_j^* \in P_n[A_j, B_j], \alpha_j$ are non-negative real numbers; $\sum_{j=1}^N \alpha_j = 1$; $-1 \le B_j < 1$ $A_j \le 1, \quad k_j \ge 2.$ Also, let

$$q_2(z) = \sum_{j=1}^{N} \alpha_j \left[\frac{k_j + 2}{4} g_j(z) - \frac{k_j - 2}{4} g_j^*(z) \right],$$

where $g_j, g_j^* \in P_n[A_j, B_j]$. Then, we see that

$$\frac{1}{\alpha+\beta} [\alpha q_1(z) + \beta q_2(z)] = \sum_{j=1}^{N} \frac{\alpha_j}{\alpha+\beta} \left[\frac{k_j+2}{4} [\alpha f_j + \beta g_j] - \frac{k_j-2}{4} [\alpha f_j^* + \beta g_j^*] \right]
= \sum_{j=1}^{N} \alpha_j \left[\frac{k_j+2}{4} p_j(z) - \frac{k_j-2}{4} u_j(z) \right].$$

Then we arrive at the proof of our Lemma, since the class $P_n[A_j, B_j]$ is convex.

Lemma 2.2. Let

$$q \in P_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n;A_1,B_1,A_2,B_2,A_3,B_3,...,A_N,B_N].$$

Then for

$$p(z) = 1 + \sum_{k=n}^{\infty} a_k z^k;$$

$$|a_n| \le \sum_{j=1}^N \frac{\alpha_j k_j}{2} (A_j - B_j)$$
 for all n .

$$(ii) \left\{ \sum_{s=1}^{N} \alpha_{s} \prod_{\substack{j=1; \ j \neq s}}^{N} (1 - B_{j}^{2} r^{2n}) \left(1 - \frac{k_{s}}{2} (A_{s} - B_{s}) r^{n} - A_{s} B_{s} r^{2n} \right) \right\} / \prod_{\substack{j=1; \ j \neq s}}^{N} (1 - B_{j}^{2} r^{2n})$$

$$\leq Rep(z)$$

$$\leq \left\{ \sum_{s=1}^{N} \alpha_s \prod_{\substack{j=1;\\j\neq s}}^{N} (1 - B_j^2 r^{2n}) \left(1 + \frac{k_s}{2} (A_s - B_s) r^n - A_s B_s r^{2n} \right) \right\} / \prod_{\substack{j=1;\\j\neq s}}^{N} (1 - B_j^2 r^{2n})$$

Notes

(iii) $q \in P_n$ for $|z| < r_0$, where r_0 is the least positive root of the equation

(2.2)
$$\sum_{s=1}^{N} \alpha_s \prod_{\substack{j=1;\\j\neq s}}^{N} (1 - B_j^2 r^{2n}) \left(1 - \frac{k_s}{2} (A_s - B_s) r^n - A_s B_s r^{2n}\right) = 0,$$

and $P_n = P_n[1, -1]$ is the class of functions of positive real part. These results are sharp.

Notes

Proof. The proof of the assertion (i) is very similar to the proof of the assertion (i) of Lemma 1.1 [4]. To prove assertion (ii) of Lemma 2.2, let $p_j, u_j \in P_n[A_j, B_j]$; $-1 \leq B_j < 1$ $A_j \leq 1, n \in N \text{ and } j = 1, 2, 3, ..., N.$ Now, let

$$p(z) = 1 + \sum_{k=n}^{\infty} a_k z^k \prec \frac{1 + A_j z}{1 + B_j z}.$$

Then, we can write $p(z) = \frac{1+A_j\phi(z)}{1+B_j\phi(z)}$, where $\phi(z)$ is analytic in Δ , $\phi(0) = 0$ and $|\phi(z)| < 1$. Expressing $\phi(z)$ in terms of p(z), we get that $\phi(z) = \frac{p(z)-1}{A_j - B_j p(z)} = \frac{a_n}{A_j - B_j} z^n + \dots = z^n \Psi(z)$, where $|\Psi(z)| \leq 1$. Therefore $|\phi(z)| \leq z^n$, and hence from the subordination principle, we have that $\left|\frac{1-A_j\phi(z)}{1-B_j\phi(z)}\right| \leq Rep(z) \leq |p(z)| \leq \frac{1+A_j\phi(z)}{1+B_j\phi(z)}$, which implies that,

(2.3)
$$\left| \frac{1 - A_j r^n}{1 - B_j r^n} \right| \le Rep(z) \le |p(z)| \le \frac{1 + A_j r^n}{1 + B_j r^n}.$$

Moreover the double inequality (2.3) will be also satisfied for the functions $u_j(z)$. Now, since

$$q \in P_{k_1,k_2,k_3,\dots,k_N}^{\alpha_1,\alpha_2,\alpha_3,\dots,\alpha_N}[n;A_1,B_1,A_2,B_2,A_3,B_3,\dots,A_N,B_N],$$

then using relation (2.1), it follows that

(2.4)
$$\sum_{j=1}^{N} \alpha_{j} \left[\frac{k_{j}+2}{4} \min Rep_{j}(z) - \frac{k_{j}-2}{4} \max u_{j}(z) \right] \leq Req(z)$$

$$\leq \sum_{j=1}^{N} \alpha_{j} \left[\frac{k_{j}+2}{4} \max Rep_{j}(z) - \frac{k_{j}-2}{4} \min u_{j}(z) \right].$$

Introducing the double inequality (2.3) in the double inequality (2.4), we obtain the following double inequality

$$\begin{split} \sum_{j=1}^{N} \alpha_{j} \bigg\{ \frac{k_{j}+2}{4} \big(\frac{1-A_{j}r^{n}}{1-B_{j}r^{n}} \big) - \frac{k_{j}-2}{4} \big[\frac{1+A_{j}r^{n}}{1+B_{j}r^{n}} \big] \bigg\} &\leq Req(z) \\ &\leq \sum_{j=1}^{N} \alpha_{j} \big\{ \frac{k_{j}+2}{4} \big(\frac{1+A_{j}r^{n}}{1+B_{j}r^{n}} \big) - \frac{k_{j}-2}{4} \big[\frac{1-A_{j}r^{n}}{1-B_{j}r^{n}} \big] \big\}, \end{split}$$

which yields, after simplification the required double inequality. The result of part (iii) of Lemma 2.2 follows easily from part (ii) of the same Lemma; since

 $Req(z) \geq \bigg\{ \sum_{s=1}^{N} \alpha_s \prod_{\substack{j=1;\\j \neq s}}^{N} (1 - B_j^2 r^{2n}) \Big(1 - \frac{k_s}{2} (A_s - B_s) r^n - A_s B_s r^{2n} \Big) \bigg\} \bigg/ \prod_{\substack{j=1;\\j \neq s}}^{N} (1 - B_j^2 r^{2n}),$

thus Re q(z) > 0, for $|z| = r_0$, where r_0 is the least positive root of the equation

$$\sum_{s=1}^{N} \alpha_s \prod_{\substack{j=1;\\j\neq s}}^{N} (1 - B_j^2 r^{2n}) \left(1 - \frac{k_s}{2} (A_s - B_s) r^n - A_s B_s r^{2n}\right) = 0.$$

Notes

The function

$$q(z) = \sum_{j=1}^{N} \alpha_j \left\{ \frac{\left(1 - \frac{k_j}{2} (A_j - B_j) z^n - A_j B_j z^{2n}\right)}{\left(1 - B_j^2 z^{2n}\right)} \right\},\,$$

shows that the results of part (ii) and (iii) of Lemma 2.2 are sharp.

Lemma 2.3. Let

$$q \in P_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3,..., A_N, B_N].$$

Then

$$(i)\frac{1}{2\pi} \int_0^{2\pi} |q(re^{i\theta})|^2 d\theta \le 1 + \frac{\left[\sum_{j=1}^N \frac{\alpha_j k_j}{2} (A_j - B_j)\right]^2 r^{2n}}{1 - r^2},$$

(ii)
$$\frac{1}{2\pi} \int_{0}^{2\pi} |q(re^{i\theta})|^{2} d\theta \le \sum_{j=1}^{N} \frac{\alpha_{j} k_{j}}{2} \left[\frac{A_{j} - B_{j}}{1 - B_{j}^{2} r^{2n}} \right].$$

Proof. Let

$$q(z) = 1 + \sum_{k=n}^{\infty} a_k z^k.$$

Then by using Parseval's identity and the result of (i) given in Lemma 2.2, we get

$$\frac{1}{2\pi} \int_{0}^{2\pi} |q(re^{i\theta})|^{2} d\theta = \sum_{k=0}^{\infty} |a_{k}|^{2} r^{2k} \le 1 + \sum_{k=n}^{\infty} \left[\sum_{j=1}^{N} \frac{\alpha_{j} k_{j}}{2} (A_{j} - B_{j}) \right]^{2} r^{2k}$$

$$= 1 + \frac{\left[\sum_{j=1}^{N} \frac{\alpha_{j} k_{j}}{2} (A_{j} - B_{j}) \right]^{2}}{(1 - r^{2})} r^{2n}$$

Now, using relation (2.1), we get that

(2.5)
$$q'(z) = \sum_{j=1}^{N} \alpha_j \left[\frac{k_j + 2}{4} Rep'_j(z) - \frac{k_j - 2}{4} Reu'_j(z) \right].$$

Moreover, for $p'_j \in P_n[A_j, B_j]$; we have

$$p'_{j}(z) = \frac{(A_{j} - B_{j})\phi'_{j}(z)}{[1 + B_{j}\phi_{j}(z)]^{2}},$$

Lie'ge, 62(5-6)(1993), 313-360.

[9]

Z.M.G. Kishka, On some Classes of analytic functions, Bulletin de la Societe' Royale des Sciences de

then

$$(2.6) \qquad \frac{1}{2\pi} \int_0^{2\pi} |q(re^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{|(A_j - B_j)| \times |w_j'(re^{i\theta})| d\theta}{|1 + B_j w_j(re^{i\theta})|} \le \frac{A_j - B_j}{1 - B_j^2 r^{2n}}.$$

Applying (2.6) in (2.5), it follows that

Ref.

$$\frac{1}{2\pi} \int_{0}^{2\pi} |q'(re^{i\theta})|^{2} d\theta \leq \sum_{j=1}^{N} \frac{\alpha_{j}}{2\pi} \int_{0}^{2\pi} \left[\frac{k_{j}+2}{4} |p'_{j}(re^{i\theta})| + \frac{k_{j}-2}{4} |u'_{j}(re^{i\theta})| \right] d\theta \\
\leq \sum_{j=1}^{N} \frac{\alpha_{j}k_{j}}{2} \left[\frac{A_{j}-B_{j}}{1-B_{j}^{2}r^{2n}} \right].$$

III. THE CLASS PN

A function f analytic in Δ is said to belong to the class

$$P'_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n;A_1,B_1,A_2,B_2,A_3,B_3,...,A_N,B_N],$$

if and only if,

$$f' \in P_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n;A_1,B_1,A_2,B_2,A_3,B_3,...,A_N,B_N].$$

Lemma 3.1. The class P_n is a convex set.

Proof. The proof of this Lemma is very similar to the proof of Lemma 1.4 (see [6]). Now, we give the following theorem:

Theorem 3.1. Let $f \in \mathbf{P}_n$. Then f is univalent for $|z| < r_0$; where r_0 is the least positive root of the equation (2.2). This result is sharp.

Proof. Let $f \in \mathbf{P}_n$, hence it follows from Lemma 1.2.2 assertion (iii) that Ref(z) > 0, $|z| < r_0$; where r_0 is the least positive root of the equation (2.2).

The sharpness follows from the function $f_1(z)$ defined by

$$f_1(z) = \left\{ \int_0^z \sum_{s=1}^N \alpha_s \prod_{j=1; j \neq s}^N (1 - B_j^2 \zeta^{2n}) \left(1 - \frac{k_s}{2} (A_s - B_s) \zeta^n - A_s B_s \zeta^{2n} \right) d\zeta \right\} / \prod_{\substack{j=1; j \neq s}}^N (1 - B_j^2 \zeta^{2n})$$

Theorem 3.2. Let $f \in \mathbf{P}_n$. Then f maps $|z| < r_1 = (\sqrt{2} - 1)r_0^n$ onto a convex domain, where r_0 is the least positive root of the equation (2.2). This result is sharp.

Proof. Let $f \in \mathbf{P}_n$. Hence it follows from Lemma 2.2 assertion (iii) that Ref(z) > 0, $|z| < r_0$; where r_0 is the least positive root of the equation (2.2). Let w be any complex number such that $|w| < r_0$. Then the function

$$G(z) = P\left(\frac{r_0^{2n}(z+w)}{r_0^{2n} + z\bar{w}}\right) = P(w) + P'(w)\left[1 - \frac{|w|^2}{r_0^{2n}}\right]z + \dots$$

is analytic in $|z| < r_0$ and Re G(z) > 0 for $|z| < r_0$. Hence

$$\left| P'(w)(1 - \frac{|w|^2}{r_0^{2n}}) \right| \le \frac{2P(w)}{r_0^n},$$

which implies that,

$$\left| \frac{P'(w)}{P(w)} \right| \le \frac{2r_0^n}{r_0^{2n} - |w|^2}.$$

Since w is any complex number with $|w| < r_0$, we can write the above inequality as

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \frac{2r_0^n|z|}{r_0^{2n} - |z|^2},$$

which implies that,

$$Re(1 + \frac{zf''(z)}{f'(z)}) \ge 1 - \frac{2r_0^n|z|}{r_0^{2n} - |z|^2} = \frac{r_0^{2n} - 2r_0^n|z| - |z|^2}{r_0^{2n} - |z|^2} > 0,$$

for all $|z| < r_1 = (\sqrt{2} - 1)r_0^n$, where r_0 is the least positive root of the equation (2.2).

The function

$$f(z) = \int_0^z \frac{1+\zeta^n}{1-\zeta^n} d\zeta$$

shows that $(\sqrt{2}-1)$ can not replaced by a smaller constant.

Theorem 3.3. Let $f \in \mathbf{P}_n$. Then for $z = re^{i\theta}$, we have

$$(3.1) |f(z)| \ge \sum_{j=1}^{N} \alpha_{j} \left\{ r \left[1 - \frac{A_{j}k_{j}r^{n}}{2(n+1)} \right] \gamma(B_{j}) + \frac{A_{j}\Phi(B_{j})}{(B_{j} + \gamma(B_{j}))} r \right.$$

$$\left. + \left[1 - \frac{A_{j}\Phi(B_{j})}{(B_{j} + \gamma(B_{j}))} \right] \left[\sum_{S=0}^{\infty} \beta_{j}^{2s} \frac{r^{2ns+1}}{2ns+1} \right]$$

$$\left. - \frac{k_{j}}{2} (A_{j} - B_{j}) \Phi(B_{j}) \left[\sum_{S=0}^{\infty} \beta_{j}^{2s} \frac{r^{2ns+n+1}}{2ns+n+1} \right] \right\},$$

where,

$$\gamma(B_j) = \begin{cases} 1, & B_j = 0, \\ 0, & B_j \neq 0 \end{cases}$$

and

$$\Phi(B_j) = \begin{cases} 0, & B_j = 0, \\ 1, & B_j \neq 0. \end{cases}$$

This result is sharp for the function

$$f_0(z) = \sum_{j=1}^{N} \alpha_j \left\{ z \left[1 - \frac{A_j k_j z^n}{2(n+1)} \right] \gamma(B_j) + \frac{A_j \Phi(B_j)}{(B_j + \gamma(B_j))} z \right\}$$

Notes

Z.M.G. Kishka, On some Classes of analytic functions, Bulletin de la Societe' Royale des Sciences de

$$+ \left[1 - \frac{A_j \Phi(B_j)}{(B_j + \gamma(B_j))}\right] \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{z^{2ns+1}}{2ns+1}\right]$$
$$- \frac{k_j}{2} (A_j - B_j) \Phi(B_j) \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{z^{2ns+n+1}}{2ns+n+1}\right] \right\}.$$

Proof. Since,

$$|f(z)| \ge \int_0^r Re(f'(te^{i\theta}))dt$$

Using part (ii) of Lemma 2.2, for f'(z) = p(z);

$$p(z) \in P'_{k_1,k_2,k_3,...,k_N}^{\alpha_1,\alpha_2,\alpha_3,...,\alpha_N}[n; A_1, B_1, A_2, B_2, A_3, B_3,..., A_N, B_N],$$

we get that,

(3.2)
$$|f(z)| \ge \int_0^r \sum_{j=1}^N \alpha_j \left\{ \frac{1 - \frac{k_j}{2} (A_j - B_j) t^n - A_j B_j t^{2n}}{1 - B_j^2 t^{2n}} \right\} dt.$$

But

Ref.

$$\frac{1 - \frac{k_j}{2}(A_j - B_j)t^n - A_jB_jt^{2n}}{1 - B_j^2t^{2n}} = \begin{cases} [1 - \frac{k_jA_j}{2}t^n]; & B_j = 0\\ \frac{A_j}{B_j} + \frac{[1 - \frac{A_j}{B_j}] - \frac{k_j}{2}(A_j - B_j)t^n}{1 - B_j^2t^{2n}};\\ B_j \neq 0. \end{cases}$$

Thus

$$I = \int_0^r \frac{1 - \frac{k_j}{2} (A_j - B_j) t^n - A_j B_j t^{2n}}{1 - B_j^2 t^{2n}} dt$$

$$= \begin{cases} \left[1 - \frac{k_j A_j}{2(n+1)} r^n \right] r; & B_j = 0 \\ \frac{A_j}{B_j} r + \left\{ (1 - \frac{A_j}{B_j}) \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{r^{2ns+1}}{2ns+1} \right] - \frac{k_j}{2} (A_j - B_j) \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{r^{2ns+n+1}}{2ns+n+1} \right] \right\},$$

$$s = 1, 2, ..., N; B_j \neq 0,$$

which implies that,

$$(3.3) \quad I = \left[1 - \frac{k_j A_j}{2(n+1)} r^n\right] r \gamma(B_j) + \frac{A_j \Phi(B_j)}{(B_j + \gamma(B_j))} r$$

$$+ \left[1 - \frac{A_j \Phi(B_j)}{(B_j + \gamma(B_j))}\right] \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{r^{2ns+1}}{2ns+1}\right] - \frac{k_j}{2} (A_j - B_j) \Phi(B_j) \left[\sum_{s=0}^{\infty} \beta_j^{2s} \frac{r^{2ns+n+1}}{2ns+n+1}\right].$$

Introducing (3.3) in the right hand side of inequality (3.2), we obtain inequality (3.1).

Remark 3.1. If we put n = 1 in Theorems 3.1, 3.2 and 3.3, we obtain the corresponding results in [6].

REFERENCES RÉFÉRENCES REFERENCIAS

- [1] F. M. Al-Oboudi and K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl. 354(2)(2009), 412-420...
- [2] R. Aghalary, J.M. Jahangiri and S.R. Karni, Starlikeness and convexity conditions for classes of functions defined by subordination, J. Inequal. Pure Appl. Math. 5, No.2, Paper No.31, 11 p. (2004).

- [3] J. Alexander, Functions with map the interior of the unit circle upon simple regions, Ann. Math. 17(1915-1916),12-22.
- [4] A. Janowski, Some external problems for certain families of analytic functions, Ann.Polon. Math. 28(1973),297-326.
- [5] D.J. Hallenbeck, and K.T. Hallenbeck, Extreme points and support points of subordination families. J. Math. Anal. Appl. 251, No.1(2000), 157-166.
- [6] Z.M.G. Kishka, On some Classes of analytic functions, Bulletin de la Societe' Royale des Sciences de Lie'ge, 62(5-6)(1993), 313-360.
- [7] J. Kaczmarski , External properties of close-to-convex functions, Mathematiyka Fizyka. Z. 3(1985), 19-39.
- [8] O.S. Kwon and S. Owa, The subordination theorem for λ -spirallike functions of order α , Int. J. Appl. Math. 11 No.2(2002), 113-119.
- [9] R. Goel and B. Mehoke, Some invariance properties of a subclass of close-to-convex functions, Indian J. Pur. and Appl.Math., 12 (1981), 1210-1249.
- [10] A. O. Mostafa, Applications of differential subordination to certain subclasses of *p*-valent meromorphic functions involving a certain operator, Math. Comput. Modelling 54(5-6)(2011), 1486-1498...
- [11] S. Owa and H.M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct. 15 No.5(2004), 445-454.
- [12] R. Parvatham and T. Shanmugan, On analytic functions with reference to an integral operators, Bull. Austral. Math. So., 28(1983),207-21.
- [13] N.N. Pascu and S. Owa, Subordination chains and univalence criteria, Bull. Korean Math. Soc. 40, No.4(2003), 671-675.
- [14] V. Ravichandran, F. Ronning and T.N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33, No.1-4(1997), 265-280.
- [15] R. Singh and S. Singh, Subordination by convex functions, Int. J. Math. Math. Sci. 24, No.8(2000), 563-568.
- [16] H.M. Srivastava and A.A. Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 5 No.4, No.82(2004).

Notes